SQL grouping, views & modifying
data

Grouping (GROUP BY)
Views

INSERT

UPDATE

DELETE

Steen Jensen, autumn 2017



SQL query - grouping

« Grouping makes it possible to show information listed
INn groups

« Conditions can be made by using the HAVING clause
— not mandatory

e Syntax:
SELECT <fieldlist>
FROM <tablename>
GROUP BY <fieldlist>
HAVING <criteria>

SELECT count(*), types, sum(price)
FROM room
GROUP BY types

HAVING sum(price)>3000 ;



SQL query - grouping

But wait a minute...
...Isn't HAVING the same as WHERE..?

Not quite
— WHERE filters specific records

— HAVING filters specific groups from the final
result

You can’t use an aggregate function in a
WHERE clause




Exercise — grouping

« With the data in place for the hotel database then run the
below gueries:

— What is the (average) number of bookings for each hotel
In this month? (February in 2011)

— What is the lost income from unoccupied rooms at each
hotel this month? As “This month” pick a month represented
In the SQL table Booking.



CREATE VIEW Intro

 Aview is defined as a query on one or more base tables or views
« To the database user, a view appears just like a real table with columns & rows
 However, unlike a base table, a view is not necessarily stored in the database

« The DBMS stores the definition of the view in the database

The format of the CREATE VIEW statement is:

CREATE VIEW ViewName [(newColumnName [, ... ])]
AS subselect [WITH [CASCADED | LOCAL] CHECK OPTION]

« The subselect is known as the defining query



CREATE VIEW- example 1

Example 6.3 Create a horizontal view

Creale a view so thal the manager at branch BO03 can see only the delails for staff who

work in his or her branch office.

A horizontal view restricts a user’s access to selected rows of one or more tables.

CREATE VIEW Manager3Staff
AS SELECT *

FROM staff

WHERE branchNo = ‘B003’;

SELECT * FROM Manager3Staff;

Table 6.3 Data for view Manager3Staff.
staffNo | fName | IName | position sex | DOB salary branchNo
SG37 Ann Beech Assistant F 10-Nov-60 12000.00 | B0O3
SG14 David Ford Supervisor | M 24-Mar-58 | 18000.00 | B003
SG5 Susan Brand Manager F 3-Jun-40 24000.00 | B003




CREATE VIEW- example 2

Example 6.4 Create a vertical view

Creatle a view of the staff delails at branch B003 that excludes salary information, so that
only managers can access the salary details for staff who work at their branch.

A vertical view restricts a user’s access to selected columns of one or more tables.

CREATE VIEW Sstaff3

AS SELECT staffNo, fName, IName, position, sex
FROM staff
WHERE branchNo = ‘B003’;

Note that we could rewrite this statement to use the Manager3Staff view instead of the Staff
table, thus:

CREATE VIEW staff3 Table 6.4
AS SELECT staffNo, fName, IName, position, sex

Data for view Staff3.

FROM Manager3Staff; staffNo | fName | IName | position sex

SG37 Ann Beech Assistant F
SG14 David Ford Supervisor | M
SGS Susan Brand Manager F




CREATE VIEW- example 3

Example 6.5 Grouped and joined views

Create a view of staff who manage properties for rent, which includes the branch
number they work at, their staff number, and the number of properties they manage
(see Example 5.27).

CREATE VIEW staffPropCnt (branchNo, staffNo, cnt)
AS SELECT s.branchNo, s.staffNo, COUNT(*)
FROM Staff s, PropertyForRent p
WHERE s.staffNo = p.staffNo
GROUP BY s.branchNo, s.staffNo;

require a multi-table join. Note that we have to name the columns in the definition of the
view because of the use of the unqualified aggregate function COUNT in the subselect.

Table 6.5 Data for view StaffPropCnl.

branchNo | staffNo | cnt

B0O3 SG14 I
B0O3 SG37 2
B0OS5 SL41 1
B0OO7 SA9 1




DROP VIEW

« Aview is removed from the database with the DROP VIEW

DROP VIEW ViewName [RESTRICT | CASCADE]

DROP VIEW causes the definition of the view to be deleted from the database. For
example, we could remove the Manager3Staff view using the statement:

DROP VIEW Manager3Staff;
If CASCADE is specified, DROP VIEW deletes all related dependent objects, in other
words, all objects that reference the view. This means that DROP VIEW also deletes any
views that are defined on the view being dropped. If RESTRICT is specified and there are

any other objects that depend for their existence on the continued existence of the view
being dropped, the command is rejected. The default setting is RESTRICT.



Advantages and disadvantages of views

Table 6.7 Summary of advantages/disadvantages of views in SQL.

Advantages Disadvantages
Data independence Update restriction
Currency Structure restriction
Improved security Performance

Reduced complexity
Convenience
Customization

Data integrity




Explanation of selected advantages

Currency

Changes to any of the base tables in the defining query are immediately reflected in the
view.

Improved security

Each user can be given the privilege to access the database only through a small set of
views that contain the data appropriate for that user, thus restricting and controlling each
user’s access to the database.

Reduced complexity

A view can simplify queries, by drawing data from several tables into a single table, thereby
transforming multi-table queries into single-table queries.

Convenience
Views can provide greater convenience to users as users are presented with only that part
of the database that they need to see. This also reduces the complexity from the user’s
point of view.

Customization

Views provide a method to customize the appearance of the database, so that the same
underlying base tables can be seen by different users in different ways.

11



Explanation of selected disadvantages

Structure restriction

The structure of a view is determined at the time of its creation. If the defining query
was of the form SELECT * FROM . . ., then the * refers to the columns of the base table
present when the view is created. If columns are subsequently added to the base table, then
these columns will not appear in the view, unless the view is dropped and recreated.

Performance

There is a performance penalty to be paid when using a view. In some cases, this will be
negligible; in other cases, it may be more problematic. For example, a view defined by a
complex, multi-table query may take a long time to process as the view resolution must
join the tables together every time the view is accessed. View resolution requires additional
computer resources. In the next section, we briefly discuss an alternative approach to
maintaining views that attempts to overcome this disadvantage.

12



Exercise in CREATE VIEW

Continue with the Hotel case
Create a view containing the hotel name of hotels in XXX (replace XXX with
a specific city from your Hotel table)

Create a view containing the hotel name and the names of the guests
staying at each hotel

Create a view containing the hotel name and a count of the number of
guests staying at each hotel

Create a view containing the hotel name and the room type for each hotel —
the different room types at each hotel should only be shown once (avoid
duplicates)

13



INSERT

e |Insert arow in a table:

INSERT INTO <tableName>
VALUES (<valuelist>)

« Example:
INSERT INTO hotel

VALUES (1,'The Pope','Vaticanstreet 1 1111
Bishopcity');

NB! The first value (1) in VALUES is NOT
necessary, as the field/column Hotel No
IS assigned by the DBMS



INSERT

* Things to note about INSERT

— The value list must match the field list for the
table into which the record Is inserted

— If we try to insert a record with a key field
which already exists, we will get an error

— Null values can be inserted if the table
definition allows it

The field list can be specified explicitly
INSERT INTO hotel
(Hotel No, Name, Address)

VALUES (1,'The Pope','Vaticanstreet 1 1111
Bishopcity');



UPDATE

« Updates values for specified field(s)
« Without a WHERE: all rows/records

UPDATE <tableName>

SET field1 = value1, field2 = value?2,...

WHERE <condition>



UPDATE

« Example:

update hotel
set name ='The Great Pope'
where hotel no=1,;



UPDATE

Things to note about UPDATE

— For each field update, the type of the value
must match the type of the field

— The WHERE clause is optional — if you leave
it out, all records in the table are updated!

— It IS not considered an error If zero rows are
changed, so pay attention to the condition in
the WHERE clause...




DELETE

 SQL syntax

— DELETE FROM table name
WHERE some_column=some_value

 Delete all rows / records from GUEST :
— DELETE FROM Guest:

 Delete all rooms from hotel no 1:
— DELETE FROM Room where Hotel no =1,;



Exercise In modifying data

« With the data in place, run the below commands on the database
— INSERT INTO Hotel VALUES ( specify your own values)
— INSERT INTO Room VALUES (specify your own values)
— UPDATE Room SET Price = Price* 1.30;
— DELETE FROM Room WHERE (Room_no = 8)

* Now formulate commands yourself, in order to:

— Insert data about ” Scandic Roskilde” in the table Hotel (you can find the
data on the Internet, or make it up yourself)

— Insert data representing the fact that Hotel Scandic have 10 rooms with
room numbers 101, 102, 103, 201, 202, 203, 301, 302, 303, 400

— Update the name of the Hotel "Scandic Roskilde” to "The new Scandic
Roskilde”

— Insert data for a booking of a room at the hotel "The new Scandic
Roskilde”



